最好的结果是您正在搜索的结果。通过简化的文档搜索、推荐系统、语义缓存和检索增强生成 (RAG),让您的 AI 应用程序更智能、更快。
# 使用 HNSW 算法、768 维度长度和内积距离度量创建向量索引 > FT.CREATE idx-videos ON HASH PREFIX 1 video: SCHEMA content_vector VECTOR HNSW 6 TYPE FLOAT32 DIM 768 DISTANCE_METRIC IP content TEXT metadata TEXT
# 添加带有元数据的视频向量 > HSET video:0 content_vector “\xa4q\t=\xc1\xdes\xbdZ$<\xbd\xd5\xc1\x99<b\xf0\xf2<x[…\xf8<” content “SUMMARY:\nThe video discusses the limitations of MySQL at scale and introduces Redis Enterprise” metadata “{\”id\”:\”FQzlq91g7mg\”,\”link\”:\”https://www.youtube.com/watch?v=FQzlq91g7mg\”,\”title\”:\”Redis + MySQL in 60 Seconds\”}” (integer) 3
# 在“users:*”上创建索引 > FT.CREATE user-idx ON JSON PREFIX 1 users: SCHEMA $.user.name AS name TEXT $.user.hobbies AS hobbies TAG $.user.age as age NUMERIC “OK”
This site uses cookies and related technologies, as described in our privacy policy, for purposes that may include site operation, analytics, enhanced user experience, or advertising. You may choose to consent to our use of these technologies, or manage your own preferences.